AD-CPUW2

ADiS Modular system central unit

Operation manual

Version 1.03

ad-cpuw2_g_en_103

AMiT, spol. s r. o. does not provide any warranty concerning the contents of this publication and reserves the right to change the documentation without obligation to inform anyone or any authority about it.

This document can be copied and redistributed under following conditions:

- 1. The whole text (all pages) must be copied without any changes.
- 2. All redistributed copies must retain the AMiT, spol. s r.o. copyright notice and any other notices contained in the documentation.
- 3. This document must not be distributed for purpose of making profit.

The names of products and companies used herein can be trademarks or registered trademarks of their respective owners.

AMiT is a registered trademark.

Copyright (c) 2015, AMiT, spol. s r. o. Producer: AMiT, spol. s r. o. Naskové 1100/3, 150 00 Praha www.amitomation.com Technical support: support@amit.cz

Obsah

	History of revisions Related documentation	
1	Introduction	
1.1	Programming	5
2	Technical parameters	6
2.1 2.2	Dimensions Recommended drawing symbol	
3	Conformity assessment	10
3.1	Other tests	10
4	Power supply	11
5	Communication interfaces	13
5.1 5.2 5.3	RS232 RS485 Ethernet interface	
6	Internal measuring, SD card	19
6.1 6.2 6.3	Backup battery measurement Measuring of power supply voltage SD card	19
7	System LEDs and SW switches	21
8	Factory settings	23
8.1	Restoring of factory setting	23
9	Mounting	25
9.1	Installation rules	
10	Ordering information and completion	27
10.1	Completion	27
11	Maintenance	
12	Waste disposal	

History of revisions

Document name: ad-cpuw2_g_en_103.pdf

Author: Stanislav Podolák, Zbyněk Říha

Revision	Date	Changes
100	1. 7. 2011	New document
101	13. 1. 2013	Default settings information added, corrections.
102	29. 7. 2014	Chapters 2, 3, 4, 6.3, 10 correction, figures correction.
103	14. 12. 2015	Correction of related documentation and chapters 2, 6.3, 7,
		8, 9.1 and 10., change of chapter structure.

Related documentation

- 1. Help for PseDet part of DetStudio development environment file: Psedet_en.chm
- 2. **ADiS** Modular control system Technical manual file: adis_mh_en_xxx.pdf
- 3. Application Note AP0006 Ethernet Network Communication file: ap0006_en_xx.pdf
- Application Note AP0009 DBNET Network Communication file: ap0009_en_xx.pdf
- 5. Application Note AP0016 Principles of RS485 usage file: ap0016_en_xx.pdf
- 6. Application Note AP0037 Principles of Ethernet network usage file: ap0037_en_xx.pdf

1 Introduction

ADiS is modular control system. A basis is formed of central processor unit **AD-CPUW2** that includes control core, operating memory, power supply, serial line circuits, and Ethernet interface. Specific configuration of control system **ADiS** is given by specialized I/O modules that are connected to a side of central processor unit. Up to 16 I/O modules can be connected to this unit. Up to 128 I/O signals within one system are available with eight-bit signals modules, up to 256 I/O signals for sixteen-bit signals modules.

It is possible to achieve further expansion by DIOCAN system expansion modules that can enlarge I/O area up to 1024 signals.

Control system can be connected to RS485 communication network (maximum 32 stations, operating system property) or to Ethernet network (number of station is practically unlimited). **ADiS** is suitable for both small and relatively demanding applications with an emphasis on communication skills because of its modularity and flexibility. The most common usage is controlling of large technological complexes, heating systems controlling, machines controlling and in special applications (monitoring, optimalization).

Processor core **AD-CPUW2** is designed as DualCPU architecture. This DualCPU architecture represents a separation on communication and processing part, each handled by a separate processor. Communication between processors is through SPI bus.

Basic features • RS232 serial interface

- RS485 serial interface with galvanic isolation
- Ethernet interface 10 / 100 Mbps
- DIN 35 mm rail mounting
- Integrated Web server

1.1 Programming

Software engineer can program only the application program in processing processor. Communication processor program is fixed and its function cannot be changed by customer.

DetStudio development environment is used for application design.

Technical parameters 2

CPU	Procedural CPU	ST10F269	
	FLASH	256 KB + 2048 KB in Single FLASH mode	
		256 KB + 1024 KB in Dual FLASH mode	
	RAM	1024 KB	
	EEPROM	2 KB	
	RAM backup	Panasonic BR2477 Lithium battery	
	Battery lifetime	5 years	
	Communication CPU	STM32F207	
	FLASH	512 KB	
	RAM	128 KB	
	Serial FLASH	8 MB	
RTC	Туре	RTC8564JE	
	Precision at 25 °C	±20 ppm	
	Precision (-10 to 70) °C	-120 ppm to +10 ppm	
D card	Туре	Micro SD (HC)	
	Capacity	128 MB to 32 GB *)	
Nata			
Note) AD-CPUVV2 contains card	d slot, micro SD card is not included.	
RS232	Quantity	1	
	Galvanic isolation	No	
	Logical level 0 (input)	Min. +3 V, max. +30 V	
	Logical level 1 (input)	Min30 V, max3 V	
	Logical level 0 (output)	Min. +5 V, max. +10 V	
	Logical level 1 (output)	Min10 V, max5 V	
	Maximum cable length	10 m	
	Operation indication	LED on panel	
	Connection point	D-sub DE-9 socket connector	
RS485	Quantity	1	
	Overvoltage protection	Transil 600 W	
	Terminating resistor **)	120 Ω on the central unit	
	Idle state definition **)		
	up to +5 V	1 k Ω on the central unit	
	up to 0 V	1 k Ω on the central unit	
	Maximum wire length	1200 m / 19200 bps	
	Maximum stations count	32	
	Operation indication	LED on panel	
	Galvanic isolation	Yes	
	Isolation strength	500 V AC / 1 minute *)	
	Connection point	WAGO 231-303/102-000	
	Wire cross section	0.08 mm ² to 2.5 mm ²	

Note *) Isolation must not be used for dangerous voltage separation.
 **) Terminating resistor and idle state definition are connected concurrently.

Ethernet	Quantity	1
	Data transmission rate	10/100 Mbps
	Recommended cabling	UTP CAT5
	Maximum segment length	120 m
	Interface controller used	STM32F207 + LAN8700
	Operation indication	LED (LNK and ACT)
	Isolation strength	200 V AC / 1 minute *)
	Connection point	RJ45 connector, according to IEEE802.3
Note	*) Isolation must not be used for	or dangerous voltage separation.
Analogue	Number of inputs	2 internal
inputs	Measuring	Battery
		System power supply voltage
Power supply	Nominal power supply voltage	24 V DC
	Power supply voltage range	19.2 V DC To 28.8 V DC
	Power consumption	Max. 250 mA at 24 V DC
	Connection point	WAGO 231-302/102-00
	Wire cross section	0.08 mm ² to 2.5 mm ²
Mechanics	Mechanical design	Plastic box
	Mounting	DIN 35 mm rail mounting
	Ingress protection rate	
	Weight *) – netto	0.28 kg ±5 %
	– brutto Dimensions (w × h × d)	0.42 kg ±5 % (58 + (n** ⁾ × 25)) mm × 104 mm × 96 mm
	 Processor module weight of 	
	**) Where n is the number of I	/ O modules in set.
Temperatures	Operating temperature range	AD-CPUW2 0 °C to 70 °C
-		AD-CPUW2/I -40 °C to 70 °C
	Storage temperature range	AD-CPUW2 -20 °C to 70 °C
		AD-CPUW2/I -40 °C to 70 °C
Others	Maximum ambient humidity	< 95 % non-condensing
	Programming	DetStudio (NOS)

2.1 Dimensions

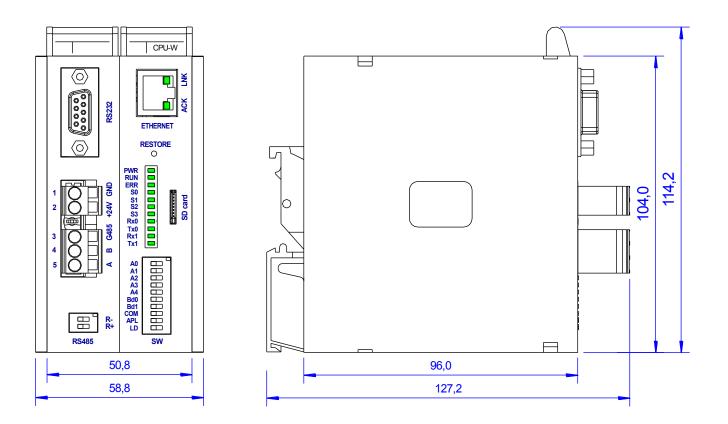


Fig. 1 – AD-CPUW2 dimensions

2.2 Recommended drawing symbol

Following drawing symbol is recommended for the central unit **AD-CPUW2**. Only part of it will be visible in following examples.

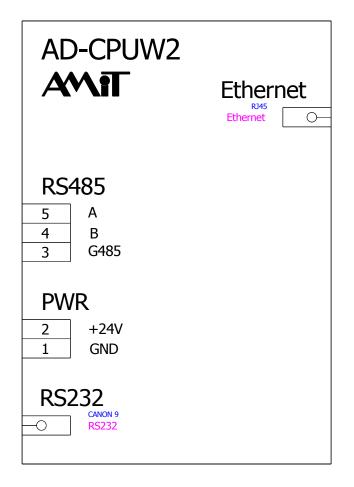


Fig. 2 – Recommended drawing symbol for AD-CPUW2

3 Conformity assessment

The equipment meets the requirements of NV616/2006 Czech governmental decree. The compliance assessment has been performed in accordance with harmonized standard EN 61326.1.

Tested in accordance with standard	Type of test	Class
EN 55011:2009	Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement	A *)
EN 61000-4-2:2009	Electromagnetic compatibility (EMC) – Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test	Complies
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques – Electrical fast transient/burst immunity test, power supply	±4 kV
EN 61000-4-4:2012	Electromagnetic compatibility (EMC) – Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test, Ethernet	±2 kV
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test, RS485	±3 kV [#])
EN 61000-4-5:2006	Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test, power supply	±3 kV [#])
EN 61000-4-6:2006	Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields	Complies

*) This is device of Class A. In the internal environment this product can cause some radio disturbances. In such case the user can be requested to take the appropriate measures.

[#]) Other than power supply circuitry cabling, which are longer than 30 m must be carried out by using the shielded cables.

3.1 Other tests

Tested in accordance with standard	Type of test	Class
EN 60068-2-1:2007	Environmental testing – Part 2-1: Tests – Test A: Cold	Complies
EN 60068-2-2:2007	Environmental testing – Part 2-2: Tests – Test B: Dry heat	Complies
EN 61000-4-29:2000	Electromagnetic compatibility (EMC) – Part 4-29: Testing and measurement techniques – Voltage dips, short interruptions and voltage variations on DC input power port – Immunity test	Complies

4 **Power supply**

The central unit **AD-CPUW2** can be power supplied only by DC power supply. Power source must meet requirements listed in chapter 2. Technical parameters. Power supply voltage connection is indicated by the status LED.

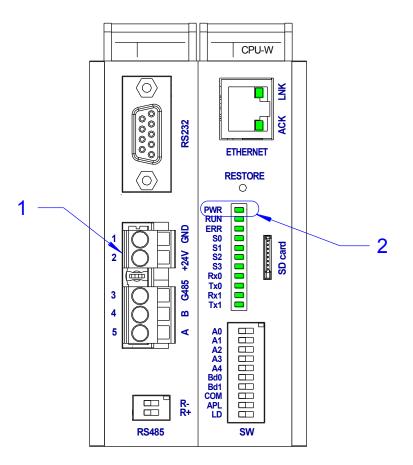
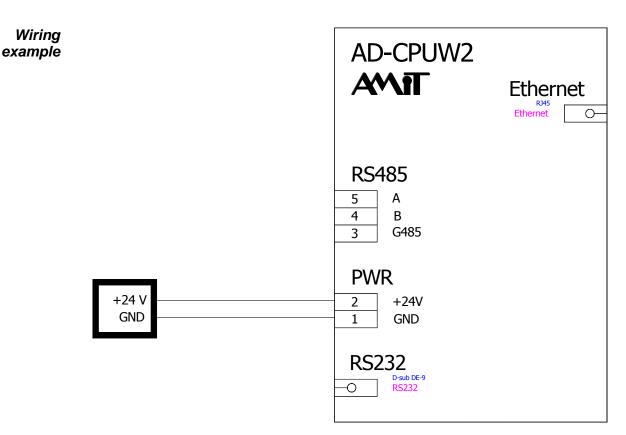


Fig. 3 – Power supply connector location


Legend	Number	Signification	
	1	Power supply connector	
	2	PWR status LED	

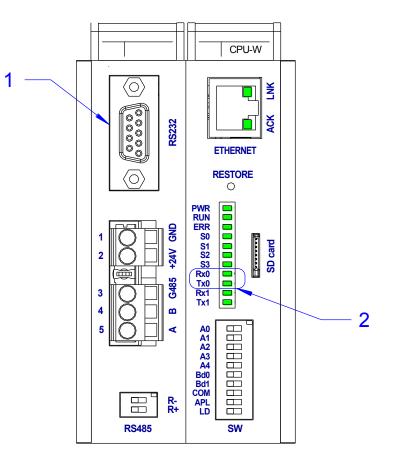
Connector	Terminal	Label	Signification
terminal	1	GND	Power supply GND
numbering	2	+24V	Power supply +24 V DC

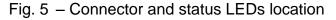
PWR status LED

Status	Signification
OFF	Power supply is not connected.
ON	Power supply is connected.

- Fig. 4 Example of stand-alone central unit's power supplying
- *Note* It is recommended to connect GND, IGND (inputs ground) and EGND (outputs ground) terminals together with the switchboard PE terminal during installation.
- Attention GND (1) terminal is hardwired to AGND terminals of **AD-AI5**, **AD-AI8** and **AD-NI8** analogue input modules.

5 Communication interfaces


The central unit **AD-CPUW2** has three communication interfaces:


- The RS232 interface is led to D-sub DE-9 socket connector.
- The RS485 interface is galvanically isolated and is led to WAGO 231 connector.
- The Ethernet interface is led to RJ45 connector.

5.1 RS232

This interface is intended for connection of two devices according to RS232 standard. Three wires are normally sufficient for bidirectional communication, a fully equipped D-sub DE-9 connector is necessary for modem control.

RS232 has a number 0 within SW in case of using NOS.

Legend	Number	Signification
	1	RS232 interface connector
	2	Status LEDs

wiring

Connector D-sub DE-9 socket on the central unit AD-CPUW2.

Pin	Signification	Туре
1	Not used	-
2	TxD	Output
3	RxD	Input
4	DSR	Input
5	GND	Ground
6	DTR	Output
7	CTS	Input
8	RTS	Output
9	RI	Input

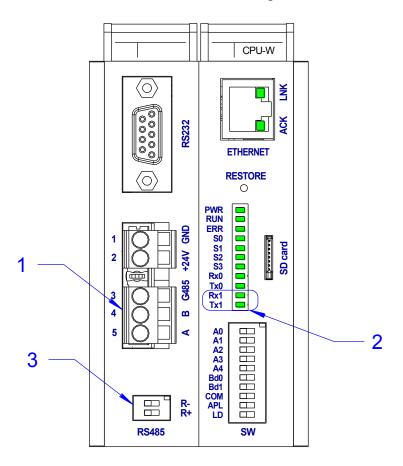
Note The **Signification** item corresponds to the central unit **AD-CPUW2** signals. Cross-cable must be used for PC connection. The **Type** item corresponds to the signal type on the central unit **AD-CPUW2**. **232P CABLE** is used for connection between central unit and PC.

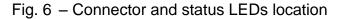
RS232 interface activity is indicated by system LEDs located on front panel.

RS232 status

. ___

status	LED	Signification
LEDs	Rx0	Unit is receiving data.
	Tx0	Unit is transmitting data.




5.2 RS485

RS485 is a half-duplex serial interface. It can be used for interconnection of more units (up to 32 within single segment). All units communicate through single signal pair.

RS485 interface circuitry is galvanically isolated from other electronics of the central unit **AD-CPUW2**.

RS485 has a number 1 within SW in case of using NOS.

Legend	Number	Signification		
	1	RS485 interface connector		
	2	Status LEDs		
	3	Idle state definition and wires termination switches		

Connector	Terminal	Label	Signification
terminal	3	G485	RS485 interface ground
numbering	4	В	RS485 interface, signal B
	5	А	RS485 interface, signal A

RS485 interface activity is indicated by system LEDs located on front panel.

RS485 status LEDs

S	LED	Signification
S	Rx1	Unit is receiving data.
	Tx1	Unit is transmitting data.

Each unit on RS485 communication network must have properly set the wires termination resistors. The switches located under RS485 connector serve to termination setting.

Switch	Switch	Position	Signification
significations	R- and R+	ON	Terminal station.
		OFF	Intermediate station.

More information about the RS485 interface usage can be found in Application Note AP0016.

5.3 Ethernet interface

The control system can be directly connected into LAN network through Ethernet interface. Components of standard structured cabling can be used for connection.

The Ethernet interface can be used both for visualization and remote uploading of application software into control system through Internet. This interface is supported by DetStudio environment. TCP/IP protocols are used for communication; therefore the communication network can be shared both by control systems and personal computers.

The central unit **AD-CPUW2** can route to DB-Net network at RS485 interface as well.

Note Isolation must not be used for dangerous voltage separation.

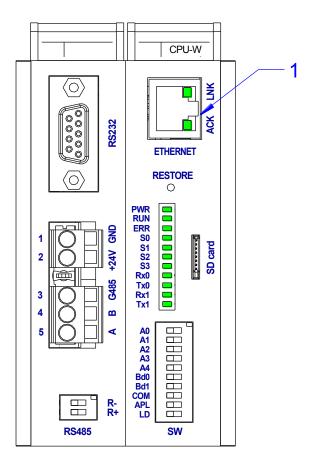


Fig. 7 – Connector location

Legend	Number	Signification	
	1	Ethernet interface connector with status LEDs	

Interface state Ethernet activity is indicated by LEDs (LNK and ACT) in connector's front panel. *indication*

Ethernet	LED	Signification
status LEDs	atus LEDs ACT Lights when Ethernet is connected.	
	LNK	Lights when receiving / transmitting data.

More information can be found in Application notes: AP0006 – Ethernet network communication and AP0037 – Principles of Ethernet network usage.

6 Internal measuring, SD card

6.1 Backup battery measurement

A backup battery voltage can be measured in applications written in DetStudio development environment through predefined analogue channel.

Operation AnIn #Vbatt, fBat, 5.000, 0.000, 10.000, 0.000, 10.000

example Measured value is battery voltage [V].

Warning can be displayed in application when it is necessary to replace the battery.

6.2 Measuring of power supply voltage

A power supply voltage can be measured in applications written in DetStudio development environment through predefined analogue channel.

Operation AnIn #Vint, fPwr, 56.0000, 0.000, 56.000, 0.700, 55.000 example Measured value is power supply voltage [V].

6.3 SD card

AD-CPUW2 front panel includes micro SD (HC) card slot. The card usage depends on operating system and communication processor program. The possible SD card usage is described in development software documentation.

The card is inserted with contacts facing the status LEDs.

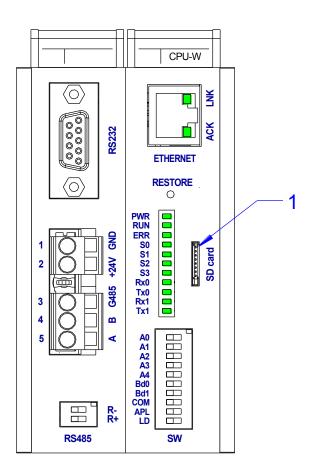
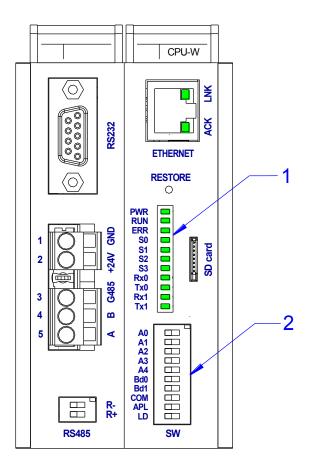


Fig. 8 – Micro SD slot location

Legend	Number	Signification
	1	Micro SD slot

Tested micro SD cards:


- Sandisk 2 GB
- SONY 2 GB
- Transcend 2 GB
- Transcend 16 GB (Class 10)
- A-Data 32 GB (Class 10)
- Kingston 32 GB (Class 10)


Other SD cards functionality cannot be guaranteed.

Note If the micro SD card capacity is up to 2 GB, FAT16 must be used. Otherwise FAT32 must to be used for more than 2 GB capacity.

7 System LEDs and SW switches

AMIT

Legend	Number	Signification
	1	System LEDs
	2	SW switches

System LEDs	LED	Colour	Signification
-	RUN	Green	Application running (see DetStudio environment help).
	ERR	Green	Application error (see DetStudio environment help).
	S0	Green	Procedural processor activity (see DetStudio environment help).
	S1	Green	Procedural processor activity (see DetStudio environment help).
	S2	Green	Procedural processor activity (see DetStudio environment help).
	S3	Green	Communication processor activity (see DetStudio environment help).

SW switches	Switch	Position	Signification
	1 to 8	ON	Configuration of system communication parameters (see
		OFF	DetStudio environment help).
	9	ON	User application running.
		OFF	User application blocking.
	10	ON	IP configuration / activating NOS loading mode (see
			DetStudio environment help).
		OFF	Standard run.

8 Factory settings

RS485 The wires termination and idle state definition switches are in ON position. *configuration*

Ethernet	Parameter	Default value
	Station IP address	192.168.1.1
	Network mask	255.255.255.0
	Default gateway	0.0.0.0
Web server	Parameter	Default value
	Administrator login / password	root/amit
	Service login / password	service / amit
	User login / password	user/amit
	Parameter	TCP port default value
	FTP server – data	20
	FTP server – control	21
	WEB server	80
DB-Net/IP	Parameter	UDP port default value
server	UDP port	59
	Password	0

8.1 Restoring of factory setting

User can select this option in case of communication problems with station, e.g. an unknown station's IP address, communication problems through Ethernet, etc.

RESTORE button is used for restoring of factory setting (press with a suitable blunt tool).

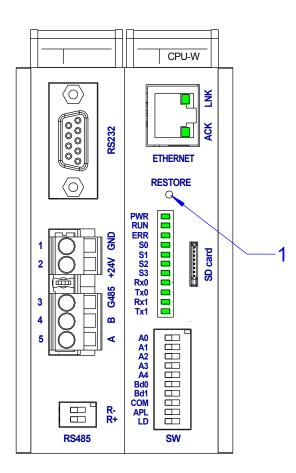
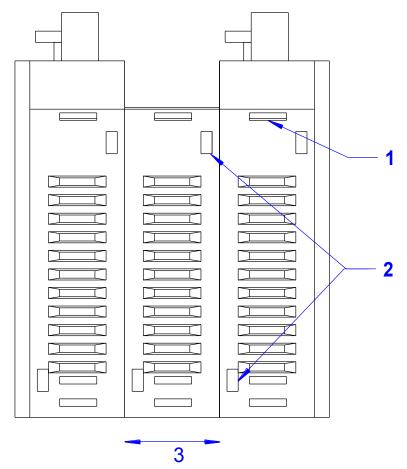
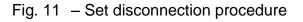


Fig. 10 – RESTORE button location

Legend	Number	Signification
	1	RESTORE button

- *Factory* Disconnect the central unit from power supply.
- setting Switch DIP10 to OFF position.
- activation Press "RESTORE" button.
 - Connect the unit power supply while holding the "RESTORE" button.
 - Hold the "RESTORE" button for about 15 s (LED S3 is swiftly flashing during this period), until LED S3 is permanently lit.
 - Release the "RESTORE" button.
 - LED S3 starts flashing with 1 s period after another 15 seconds.


Factory setting is restored.



9 Mounting

The central unit **AD-CPUW2** must be built in metal sheet switchboard. It is intended for DIN 35 mm rail mounting.

- **Assembly** System is delivered in completion according to an order. When inserting another module or replacing defective one proceeds as follows:
 - Remove set from DIN rail
 - Remove labels
 - Disconnect DIN rail carrier use screwdriver to pry carefully on top and bottom marked points
 - Disconnect modules use screwdriver to pry carefully on top and bottom marked points and disconnect modules
 - AD-CPUW2 double module is internally screwed by two screws it is necessary to unscrew them before dismantle!

Legend	Number	Signification
	1	Prying position for carrier dismounting
	2	Prying position for modules disconnection
	3	Disconnection direction

9.1 Installation rules

EMC filter Use an EMC filter on 230 V AC power supply voltage input. This requirement can be revised on the basis of environment character and wiring layout.

Connect the negative supplying terminal of control system (GND) to the switchboard PE terminal.

Digital I/O Wire the negative terminal of all inputs and outputs to the switchboard PE terminal.

Separate power supply section is recommended. It is sufficient to use the same power supply for both digital inputs and outputs.

Realize the PE connection on the switchboard input.

Use the shielded wires for longer distances and in higher level disturbance environment. Connect the cable shielding to the switchboard's PE terminal just on the input.

If the wires are led outside the building, the appropriate inputs and outputs need to be overvoltage protected.

Analogue Use the shielded cables for wiring. Connect the cable shielding to the *inputs* switchboard's PE terminal just on the input.

If the wires are led outside the building, the appropriate inputs and outputs need to be overvoltage protected.

RS485 It is necessary to perform RS485 interface connecting according to **channel** recommendations in Application Note AP0016 – Principles of RS485 interface usage.

RS232 It is enough to use an unshielded flat communication cable for service purposes *channel* and within the switchboard frame usage.

Use the shielded cables for permanent usage outside the switchboard frame. Connect the cable shielding to the switchboard's PE terminal just on the input.

Ethernet It is enough to use an unshielded cable (the patch cable) for service purposes *interface* and within the switchboard frame usage.

It is necessary to perform Ethernet interface connection according to recommendations in Application Note *AP0037 – Principles of Ethernet network usage* in case of permanent usage outside the switchboard frame.

Note All PE interconnections must be realized with the lowest impedance as possible. Technical parameters of control system are guaranteed only when these wiring rules are applied.

10 Ordering information and completion

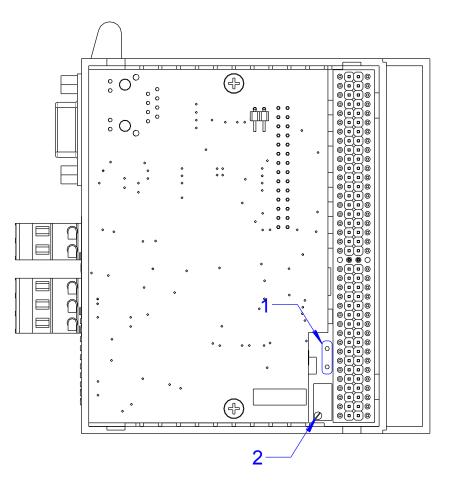
Central Unit	AD-CPUW2	Complete, see chapter 10.1 Completion
	AD-CPUW2/I	Complete, see chapter 10.1 Completion

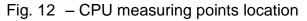
10.1 Completion

AD-CPUW2 Part Quantity Modular system ADiS central unit 1 WAGO 231-302/102-000 1 WAGO 231-303/102-000 1 WAGO 231-131 1 DIN carrier 2

AD-CPUW2/I

/2/I	Part	Quantity
	Modular system ADiS central unit	1
	with temperature range -40 °C to 70 °C	
	WAGO 231-302/102-000	1
	WAGO 231-303/102-000	1
	WAGO 231-131	1
	DIN carrier	2




11 Maintenance

The device does not require any regular inspection or service, except checking of reference voltage setting as well as backup accumulator voltage.

Reference A/D converter reference voltage of 5.0 V is set with ±1 mV precision from **voltage** manufacturer. Only sufficiently accurate measuring instrument can check this **source** voltage value correctly!

Checking is necessary at least once every five years.

Legend	Number	Signification
	1	Measuring points
	2	V _{ref} setting trimmer

Backup The backup battery is used for backing up program and RAM memory **battery** parameters. Its nominal voltage is 3.0 V DC; nominal capacity is 1 Ah. If battery voltage drops under 2.7 V, it is considered as discharged. When this happens, it is necessary to change it.

Checking is necessary at least once every five years. An assumed battery lifetime is 10 years according to manufacturer.

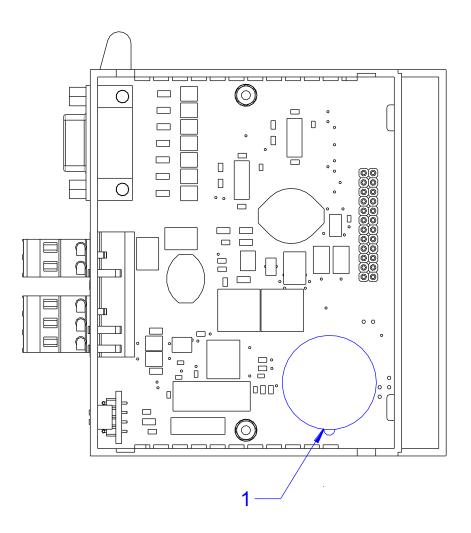


Fig. 13 – Battery location on power supply board

Legend	Number	Signification
	1	Battery

- *Cleaning* Time after time with regard to way of device usage, it is necessary to remove dust from inside electronics. The device can be cleaned by dry soft brush or vacuum cleaner, only when turned-off and disassembled.
 - *Note* The maintenance mentioned above can be performed by manufacturer or authorized service only!

12 Waste disposal

- *Electronics* The disposal of electronic equipment is subject to the regulations on handling electrical waste. The equipment must not be disposed in common public waste. It must be delivered to places specified for that purpose and recycled.
 - **Battery** The equipment contains a lithium battery. The battery is a hazardous waste. **disposal** Therefore, it must be delivered to places specified for that purpose. Disposal of worn-out batteries and accumulators must not be in contrary to valid regulations.